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Abstract 

We  report  our  progress in achieving  precise  frequency  measurements by integrating  high-Q  superconducting-cavity- 
stabilized  cavities (SCSO) with  high-resolution  thermometry  and  phase-locked-loop (PLL) techniques. The relevant 
effects that  influence  the  ultimate  frequency  stability of SCSO N are  described,  and  applications of 
this  technique  to  precise  measurements of the liquid  helium  critical  phenomena  are  discussed. 

Since the 1970's, superconducting-cavity- 
stabilized oscillators (SCSO's)  have been known 
to provide the best frequency stability [l] (w  

3 x 10- l~ )  for measurement times up to N lo3 
s. Recent advances in  microwave  technology and 
high-resolution thermometry [2] have projected 
further improvement in the frequency stability  to 
better  than - lo-'' [3-51, provided that 
the following stringent technical requirements are 
satisfied: (1) high-quality  factor (Q) of the su- 
perconducting  cavity - to minimize energy losses 
for long-term stability; (2) high-resolution  tem- 
perature  control - to minimize the temperature- 
dependent frequency drift; (3) high-resolution 
frequency  readout  and control - to provide active 
feedback mechanism for frequency stability;  (4) 
vibration  isolation - to prevent accelerations and 
external mechanical aggitation that distort the di- 
mensions and  the frequency stability of the cavity. 
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We choose  niobium as the superconducting ma- 
terial because of its relatively large superconduct- 
ing energy gap  and mechanical rigidity [3]. To min- 
imize the residual losses of the superconducting 
cavity, we use  chemical etching together  with high- 
temperature (> 1500°C) and  ultra-high vacuum 
(- lo-' Torr) annealing to process the cavities [4], 
and  then measured the quality factor of the TEoll 
mode at N 14.12  GHz. Steady improvement of the 
Q values  have  been found with increasing anneal- 
ing time, and Q >-J 10'O may be achieved with 
sufficiently  long time annealing [5]. A representa- 
tive set of data for one of the niobium cavities is 
shown in Fig. 1. More details of the cavity pro- 
cessing procedure and Q measurements are given 
elsewhere [4,5]. 

We have  shown previously [3] that for oper- 
ation  temperatures near 2 K, the temperature- 
dependent frequency stability for w N 27r x ~ O ' O S - ~  

is (l/w)(dw/dT) x -10F8K-'. Hence, the tem- 
perature  stability must be  better  than K 
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Fig. 1. Characterization of one of the cavities  annealed  for 
20 hours, showing a quality factor Q N 2 X lo9 at 1.77 K. 
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Fig. 2. The  temperature resolution of our HRT system a s  a 
function of the sample temperature, using the ammonium 
bromide (CAB) paramagnetic salt, and calibrated with a 
known germanium resistive temperature sensor. 

to achieve a frequency stability in the order of 
N 1O-l8 .  This can be readily achieved  by 

using HRT [2]. The approach is based on high- 
resolution measurements of the magnetic suscep 
tibility x(T) of a paramagnetic salt pill using the 
superconducting quantum intereference devices 
(SQUID) [5]. In  contrast to  the early HRT  which 
utilized rf-SQUID technique [2], we integrated dc- 
SQUID into our HRT setup,  and found reduction 
in the voltage noise and therefore improved tem- 
perature resolution by about one order of magni- 
tude,  to N 10"l K at N 2 K, as shown in Fig. 2 
and detailed in [5] for our HRT system. We note 
that  the resolution is proportional to  the sensi- 
tivity of x(T) ,  so that  the  data resemble x (T)  of 
CAB, with maximum sensitivity at TC N 1.78 K. 

To measure and stabilize the resonant frequency 
of a superconducting cavity to high resolution, a 
phase-locked loop (PLL) technique is  employed. 
The principle is to compare the resonant frequency 
f o  of the superconducting cavity with the signal 
output of a low-noise synthesizer at a carrier fre- 
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Fig. 3. The block diagram of the frequency control and 
readout system. (LFS:  low-noise  frequency synthesizer) 

quency f c .  By using the error voltage V,,, c( ( f c  - 
f o )  in an active feedback circuit to  tune  the fre- 
quency of the low-noise synthesizer, the frequency 
f o  may be read  and stabilized to high resolution 
( N  lO"/Q) [4,5]. The block diagram of the system 
is depicted in Fig. 3. We emphasize the necessity of 
using a very stable frequency standard as a com- 
parison source in the readout.  The next step for us 
is to acquire a cesium standard with N fre- 
quency stability for comparison, and  later  to con- 
struct  a second SCCO for even better resolution. 

In  addition to  the obvious application as fre- 
quency standards,  the SCSO system may be ap- 
plied to perform precise measurements of the crit- 
ical phenomena of liquid helium near phase transi- 
tions by determining the temperature-dependent 
dielectric constant from the resonant frequency 
shift of a Nb cavity that contains liquid helium [3]. 
Hence, the SCSO system is versatile, not only 
as  the best short-term frequency standard,  but 
also as a vehicle  for  verifying the fundamentals of 
renormalization group theory. 
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